Community
by: smoothgroove, 9 years ago
Last edited: 9 years ago
I believed i followed this Tutorial(Python: Average Directional Index (ADX) 4 Directional Movement System Calculation ) to the T!
but for some reason its not working
I used python 3.5 and python 2.7
the script does run
but PositiveDI prints out lots of zeros at the start:
[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.6796655606859465, 4.8608501180864572, 5.0519981599119905, 5.253722178459804, 7.0995004362784035, 7.8134114348782102, 10.296702479575808, 11.613858259904966, 12.82297816588799, 13.224465770390136, 14.461149517903598, 15.186392394378423, 19.108133997681321, 22.153480492590248]
and NegativeDI look like decimal is in the wrong spot:
[1264.8232132711423, 1264.8232132711423, 1264.8232132711423, 1264.8232132711423, 1264.8232132711423, 1264.8232132711423, 1264.8232132711423, 1264.8232132711423, 1264.8232132711423, 1264.8232132711423, 1264.8232132711423, 1264.8232132711423, 1264.8232132711423, 1264.8232132711423, 1264.8232132711423, 1223.6609270295814, 1208.7821969325728, 1254.2085665117302, 1253.7048780528603, 1214.0470233080562, 1132.5904568797594, 1143.1243818789487, 1140.629041056726, 1109.6539352340444, 1066.0227381931079, 1061.5067266307467, 985.99843045027797, 1022.5674381891432, 968.88574746730922, 1014.9504689732723, 1002.9924537518942, 949.55537150363546, 982.8651616570919, 948.46675135171756, 1019.7163581082577, 972.52097918355264, 948.44682741439999, 944.29645455659545, 925.05202603545274, 947.66146625923011, 1027.3183737578063, 1066.0043723586368, 1060.547027618491, 1012.8872331646032, 953.50112731110016, 1023.5865717715576, 970.1237502366215, 977.28046546252813, 977.74264872732169, 960.69145003727544, 914.9756975534782, 875.69082954627186, 907.46106232797285, 838.11177576148555, 811.26155252903163, 750.91049971936798, 711.64667388492114, 737.51809727184957, 761.83090030595167, 732.14427888509044, 745.9122888915557, 697.61367088721488, 673.37325742915414, 656.6453212145143, 655.70432866198007, 655.79381899149359, 681.34886692518228, 685.13447904896054, 656.21867780970558, 631.55179654555081, 604.11732804314624, 567.54488834389747, 569.12042579506897, 538.60692734154964, 507.88155266323605, 505.4974388356033, 487.87999303205635, 444.53081621096374, 415.37652348430487, 381.69908802673206, 390.42671297124161, 367.24599437972228, 336.70001248193847, 308.27719216468154, 296.26538560751681, 276.50563145939049, 260.72491197017303, 245.94580912605534, 249.38937796064593, 247.5134790706712, 229.49285040474211, 218.70496852544804, 209.2571118302285, 204.80634237244681, 192.09008963183106, 171.7285065741018, 173.01485148871313, 160.65839200091946, 143.48544875513849, 133.16840332150778, 114.18343265996521, 104.61739573128254, 83.650024158729224, 56.364704630521565, 45.296811684013619]
ADX looks interesting:
[100. 100. 100. 100. 100. 100. 100.
100. 100. 100. 100. 100. 100. 100.
100. 100. 100. 100. 100. 100. 100.
100. 100. 100. 100. 100. 100. 100.
100. 100. 100. 100. 100. 100. 100.
100. 100. 100. 100. 100. 100. 100.
100. 100. 100. 100. 100. 100. 100.
100. 100. 100. 100. 100. 100. 100.
100. 100. 100. 100. 100. 100. 100.
100. 100. 100. 100. 100. 100. 100.
100. 100. 100. 100. 100. 100. 100.
100. 100. 100. 100. 100. 100. 100.
100. 100. 100. 100. 100. 100. 100.
99.82692439 99.62552835 99.39669673 99.12851026 98.73083228
98.27236692 97.63661555 96.8289974 95.84978245 94.66039176
93.23011239 91.41935955 88.64154788 85.01982084]
I began to start plotting the graph but I'm scared to death of the out come!
who ever can help, I owe my life too! lol
from smoothgroove
code:
import numpy as np
sampleData = open ('sampleData.txt','r').read()
splitData = sampleData.split('n')
date,closep,highp,lowp,openp,volume = np.loadtxt(splitData,
delimiter=',',
unpack=True)
def TR(d,c,h,l,o,yc):
x = h-l
y = abs(h-yc)
z = abs(l-yc)
if y <= x >= z:
TR = x
elif x <= y >= z:
TR = y
elif x <= z >= y:
TR = z
return d, TR
def DM(d,o,h,l,c,yo,yh,yl,yc):
moveUp = h-yh
moveDown = yl-l
if 0 < moveUp > moveDown:
PDM = moveUp
else:
PDM = 0
if 0 < moveDown > moveUp:
NDM = moveDown
else:
NDM = 0
return d,PDM,NDM
def ExpMovingAverage(values, window):
weights = np.exp(np.linspace(-1., 0., window))
weights /= weights.sum()
a = np.convolve(values, weights, mode='full')[:len(values)]
a[:window] = a[window]
return a
def calcDIs():
x = 1
TRDates = []
TrueRanges = []
PosDMs = []
NegDMs = []
while x < len(date):
TRDate,TrueRange = TR(date[x],closep[x],highp[x],lowp[x],openp[x],closep[x-1])
TRDates.append(TRDate)
TrueRanges.append(TrueRange)
DMdate,PosDM,NegDM = DM(date[x],openp[x],highp[x],lowp[x],closep[x],openp[x-1],highp[x-1],lowp[-1],closep[x-1])
PosDMs.append(PosDM)
NegDMs.append(NegDM)
x +=1
print len(PosDMs)
expPosDM = ExpMovingAverage(PosDMs,14)
expNegDM = ExpMovingAverage(NegDMs,14)
ATR = ExpMovingAverage(TrueRanges,14)
xx = 0
PDIs = []
NDIs = []
while xx < len(ATR):
PDI = 100*(expPosDM[xx]/ATR[xx])
PDIs.append(PDI)
NDI = 100*(expNegDM[xx]/ATR[xx])
NDIs.append(NDI)
xx +=1
return PDIs,NDIs
def ADX():
PositiveDI,NegativeDI = calcDIs()
print len(PositiveDI)
print len(NegativeDI)
print len(date[1:])
xxx = 0
DXs =[]
while xxx < len(date[1:]):
DX = 100*( (abs(PositiveDI[xxx]-NegativeDI[xxx])
/(PositiveDI[xxx]+NegativeDI[xxx])))
DXs.append(DX)
xxx += 1
print len(DXs)
ADX = ExpMovingAverage(DXs,14)
print len(ADX)
print len(date[1:])
print PositiveDI
print NegativeDI
print ADX
ADX()
Try comparing your code to mine:
''' This code is copyright Harrison Kinsley. The open-source code is released under a BSD license: Copyright (c) 2013, Harrison Kinsley All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of the <organization> nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL <COPYRIGHT HOLDER> BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ''' import urllib2 import time import datetime import numpy as np import matplotlib.pyplot as plt import matplotlib.ticker as mticker import matplotlib.dates as mdates from matplotlib.finance import candlestick_ohlc import matplotlib import pylab matplotlib.rcParams.update({'font.size': 9}) def rsiFunc(prices, n=14): deltas = np.diff(prices) seed = deltas[:n+1] up = seed[seed>=0].sum()/n down = -seed[seed<0].sum()/n rs = up/down rsi = np.zeros_like(prices) rsi[:n] = 100. - 100./(1.+rs) for i in range(n, len(prices)): delta = deltas[i-1] # cause the diff is 1 shorter if delta>0: upval = delta downval = 0. else: upval = 0. downval = -delta up = (up*(n-1) + upval)/n down = (down*(n-1) + downval)/n rs = up/down rsi[i] = 100. - 100./(1.+rs) return rsi def movingaverage(values,window): weigths = np.repeat(1.0, window)/window smas = np.convolve(values, weigths, 'valid') return smas # as a numpy array def ExpMovingAverage(values, window): weights = np.exp(np.linspace(-1., 0., window)) weights /= weights.sum() a = np.convolve(values, weights, mode='full')[:len(values)] a[:window] = a[window] return a def computeMACD(x, slow=26, fast=12): emaslow = ExpMovingAverage(x, slow) emafast = ExpMovingAverage(x, fast) return emaslow, emafast, emafast - emaslow def graphData(stock,MA1,MA2): ''' Use this to dynamically pull a stock: ''' try: print 'Currently Pulling',stock print str(datetime.datetime.fromtimestamp(int(time.time())).strftime('%Y-%m-%d %H:%M:%S')) #Keep in mind this is close high low open, lol. urlToVisit = 'http://chartapi.finance.yahoo.com/instrument/1.0/'+stock+'/chartdata;type=quote;range=10y/csv' stockFile =[] try: sourceCode = urllib2.urlopen(urlToVisit).read() splitSource = sourceCode.split('n') for eachLine in splitSource: splitLine = eachLine.split(',') if len(splitLine)==6: if 'values' not in eachLine: stockFile.append(eachLine) except Exception, e: print str(e), 'failed to organize pulled data.' except Exception,e: print str(e), 'failed to pull pricing data' try: date, closep, highp, lowp, openp, volume = np.loadtxt(stockFile,delimiter=',', unpack=True, converters={ 0: mdates.strpdate2num('%Y%m%d')}) x = 0 y = len(date) newAr = [] while x < y: appendLine = date[x],openp[x],closep[x],highp[x],lowp[x],volume[x] newAr.append(appendLine) x+=1 Av1 = movingaverage(closep, MA1) Av2 = movingaverage(closep, MA2) SP = len(date[MA2-1:]) fig = plt.figure(facecolor='#07000d') ax1 = plt.subplot2grid((6,4), (1,0), rowspan=4, colspan=4, axisbg='#07000d') candlestick_ohlc(ax1, newAr[-SP:], width=.6, colorup='#53c156', colordown='#ff1717') Label1 = str(MA1)+' SMA' Label2 = str(MA2)+' SMA' ax1.plot(date[-SP:],Av1[-SP:],'#e1edf9',label=Label1, linewidth=1.5) ax1.plot(date[-SP:],Av2[-SP:],'#4ee6fd',label=Label2, linewidth=1.5) ax1.grid(True, color='w') ax1.xaxis.set_major_locator(mticker.MaxNLocator(10)) ax1.xaxis.set_major_formatter(mdates.DateFormatter('%Y-%m-%d')) ax1.yaxis.label.set_color("w") ax1.spines['bottom'].set_color("#5998ff") ax1.spines['top'].set_color("#5998ff") ax1.spines['left'].set_color("#5998ff") ax1.spines['right'].set_color("#5998ff") ax1.tick_params(axis='y', colors='w') plt.gca().yaxis.set_major_locator(mticker.MaxNLocator(prune='upper')) ax1.tick_params(axis='x', colors='w') plt.ylabel('Stock price and Volume') maLeg = plt.legend(loc=9, ncol=2, prop={'size':7}, fancybox=True, borderaxespad=0.) maLeg.get_frame().set_alpha(0.4) textEd = pylab.gca().get_legend().get_texts() pylab.setp(textEd[0:5], color = 'w') volumeMin = 0 ax0 = plt.subplot2grid((6,4), (0,0), sharex=ax1, rowspan=1, colspan=4, axisbg='#07000d') rsi = rsiFunc(closep) rsiCol = '#c1f9f7' posCol = '#386d13' negCol = '#8f2020' ax0.plot(date[-SP:], rsi[-SP:], rsiCol, linewidth=1.5) ax0.axhline(70, color=negCol) ax0.axhline(30, color=posCol) ax0.fill_between(date[-SP:], rsi[-SP:], 70, where=(rsi[-SP:]>=70), facecolor=negCol, edgecolor=negCol, alpha=0.5) ax0.fill_between(date[-SP:], rsi[-SP:], 30, where=(rsi[-SP:]<=30), facecolor=posCol, edgecolor=posCol, alpha=0.5) ax0.set_yticks([30,70]) ax0.yaxis.label.set_color("w") ax0.spines['bottom'].set_color("#5998ff") ax0.spines['top'].set_color("#5998ff") ax0.spines['left'].set_color("#5998ff") ax0.spines['right'].set_color("#5998ff") ax0.tick_params(axis='y', colors='w') ax0.tick_params(axis='x', colors='w') plt.ylabel('RSI') ax1v = ax1.twinx() ax1v.fill_between(date[-SP:],volumeMin, volume[-SP:], facecolor='#00ffe8', alpha=.4) ax1v.axes.yaxis.set_ticklabels([]) ax1v.grid(False) ax1v.set_ylim(0, 3*volume.max()) ax1v.spines['bottom'].set_color("#5998ff") ax1v.spines['top'].set_color("#5998ff") ax1v.spines['left'].set_color("#5998ff") ax1v.spines['right'].set_color("#5998ff") ax1v.tick_params(axis='x', colors='w') ax1v.tick_params(axis='y', colors='w') ax2 = plt.subplot2grid((6,4), (5,0), sharex=ax1, rowspan=1, colspan=4, axisbg='#07000d') # START NEW INDICATOR CODE # def TR(d,c,h,l,o,yc): x = h-l y = abs(h-yc) z = abs(l-yc) if y <= x >= z: TR = x elif x <= y >= z: TR = y elif x <= z >= y: TR = z return d, TR def DM(d,o,h,l,c,yo,yh,yl,yc): moveUp = h-yh moveDown = yl-l if 0 < moveUp > moveDown: PDM = moveUp else: PDM = 0 if 0 < moveDown > moveUp: NDM = moveDown else: NDM = 0 return d,PDM,NDM def calcDIs(): x = 1 TRDates = [] TrueRanges = [] PosDMs = [] NegDMs = [] while x < len(date): TRDate, TrueRange = TR(date[x],closep[x],highp[x],lowp[x],openp[x],closep[x-1]) TRDates.append(TRDate) TrueRanges.append(TrueRange) #DM(d,o,h,l,c,yo,yh,yl,yc) DMdate,PosDM,NegDM = DM(date[x],openp[x],highp[x],lowp[x],closep[x],openp[x-1],highp[x-1],lowp[x-1],closep[x-1]) PosDMs.append(PosDM) NegDMs.append(NegDM) x+=1 print len(PosDMs) expPosDM = ExpMovingAverage(PosDMs,14) expNegDM = ExpMovingAverage(NegDMs,14) ATR = ExpMovingAverage(TrueRanges,14) xx = 0 PDIs = [] NDIs = [] while xx < len(ATR): PDI = 100*(expPosDM[xx]/ATR[xx]) PDIs.append(PDI) NDI = 100*(expNegDM[xx]/ATR[xx]) NDIs.append(NDI) xx += 1 return PDIs,NDIs def ADX(): PositiveDI,NegativeDI = calcDIs() print len(PositiveDI) print len(NegativeDI) print len(date[1:]) xxx = 0 DXs = [] while xxx < len(date[1:]): DX = 100*( (abs(PositiveDI[xxx]-NegativeDI[xxx]) /(PositiveDI[xxx]+NegativeDI[xxx]))) DXs.append(DX) xxx += 1 print len(DXs) ADX = ExpMovingAverage(DXs,14) print len(ADX) print len(date[1:]) print PositiveDI print NegativeDI print ADX plotDate = date[1:] try: ax2.plot(plotDate[-SP:],ADX[-SP:],'w') ax2.plot(plotDate[-SP:],PositiveDI[-SP:],'g') ax2.plot(plotDate[-SP:],NegativeDI[-SP:],'r') plt.ylabel('ADX(14)',color='w') except Exception, e: print str(e) ADX() # END NEW INDICATOR CODE # plt.gca().yaxis.set_major_locator(mticker.MaxNLocator(prune='upper')) ax2.spines['bottom'].set_color("#5998ff") ax2.spines['top'].set_color("#5998ff") ax2.spines['left'].set_color("#5998ff") ax2.spines['right'].set_color("#5998ff") ax2.tick_params(axis='x', colors='w') ax2.tick_params(axis='y', colors='w') ax2.yaxis.set_major_locator(mticker.MaxNLocator(nbins=5, prune='upper')) for label in ax2.xaxis.get_ticklabels(): label.set_rotation(45) plt.suptitle(stock.upper(),color='w') plt.setp(ax0.get_xticklabels(), visible=False) plt.setp(ax1.get_xticklabels(), visible=False) '''ax1.annotate('Big news!',(date[510],Av1[510]), xytext=(0.8, 0.9), textcoords='axes fraction', arrowprops=dict(facecolor='white', shrink=0.05), fontsize=14, color = 'w', horizontalalignment='right', verticalalignment='bottom')''' plt.subplots_adjust(left=.09, bottom=.14, right=.94, top=.95, wspace=.20, hspace=0) plt.show() fig.savefig('example.png',facecolor=fig.get_facecolor()) except Exception,e: print 'main loop',str(e) while True: stock = raw_input('Stock to plot: ') graphData(stock,10,50)
-Harrison 9 years ago
Reply
×
You must be logged in to post. Please login or register an account.
Does the ADX function works? I tried the function for some of the stocks, however results were not matching with the investing.com chart indicator.
-sanjeevkumar.093 5 years ago
Reply
×
You must be logged in to post. Please login or register an account.